skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palmer, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionVolatile organic compounds (VOCs) are small, low-vapor-pressure molecules emitted from the surface ocean into the atmosphere. In the atmosphere, VOCs can change OH reactivity and condense onto particles to become cloud condensation nuclei. VOCs are produced by phytoplankton, but the conditions leading to VOC accumulation in the surface ocean are poorly understood. MethodsIn this study, VOC accumulation was measured in real time over a 12 h day−12 h night cycle in the model diatomPhaeodactylum tricornutumduring exponential growth. ResultsSixty-threem/zsignals were produced in higher concentrations than in cell-free controls. All VOCs, except methanol, were continuously produced over 24 h. All VOCs accumulated to higher concentrations during the day compared to the night, and 11 VOCs exhibited distinct accumulation patterns during the morning hours. Twenty-seven VOCs were associated with known metabolic pathways inP. tricornutum, with most VOCs involved in amino acid and fatty acid metabolism. DiscussionPatterns of VOC production were strongly associated with diel shifts in cell physiology and the cell cycle. Diel VOC production patterns give a fundamental understanding of the first steps in VOC accumulation in the surface ocean. 
    more » « less
    Free, publicly-accessible full text available October 6, 2026
  2. Biological flyers periodically flap their appendages to generate aerodynamic forces. Extensive studies have made significant progress in explaining the physics behind their propulsion in cruising by developing scaling laws of their flight kinematics. Notably Strouhal number (St; ratio of flapping frequency times stroke amplitude to cruising speed) has been found to fall in a narrow range for animal cruising flights. However, St exhibits strong correlation to flight conditions; as such, its universality has been confined to preferred flight conditions. Since the leading-edge vortices (LEV) on flapping appendages generate the majority of propulsive forces, here we take the perspective of LEV circulation maximization, which generalizes the dimensionless vortex formation time to flapping flight. The generalized vortex formation time scales the duration of vorticity injection with the rate of total vorticity growth inside the LEV and the maximum vorticity allowed inside it. By comparing the new scaling with St of previously reported animal cruising flights of 28 species, we show that the generalized vortex formation time is consistent across different animals and cruising locomotion, independent of flight conditions. This finding advances the fundamental principles underlying the complex wing kinematics of biological flyers and highlights a unifying framework for understanding biolocomotion. 
    more » « less
    Free, publicly-accessible full text available August 29, 2026
  3. A Monte Carlo analysis of a contingency optimal guidance strategy is conducted. The guidance strategy is applied to a Mars Entry problem in which it is assumed that the surface level atmospheric density is a random variable. First, a nominal guidance strategy is employed such that the optimal control problem is re-solved at constant guidance cycles. When the trajectory lies within a particular distance from a path constraint boundary, the nominal guidance strategy is replaced with a contingency guidance strategy, where the contingency guidance strategy attempts to prevent a violation in the the relevant path constraint. The contingency guidance strategy utilizes the reference optimal control problem formulation, but modifies the objective functional to maximize the margin between the path constraint limit and path constraint function value. The ability of the contingency guidance strat- egy to prevent violations in the path constraints is assessed via a Monte Carlo simulation. 
    more » « less
  4. A Monte Carlo analysis of a contingency optimal guidance strategy is conducted. The guidance strategy is applied to a Mars Entry problem in which it is assumed that the surface level atmospheric density is a random variable. First, a nominal guidance strategy is employed such that the optimal control problem is re-solved at constant guidance cycles. When the trajectory lies within a particular distance from a path constraint boundary, the nominal guidance strategy is replaced with a contingency guidance strategy, where the contingency guidance strategy attempts to prevent a violation in the the relevant path constraint. The contingency guidance strategy utilizes the reference optimal control problem formulation, but modifies the objective functional to maximize the margin between the path constraint limit and path constraint function value. The ability of the contingency guidance strategy to prevent violations in the path constraints is assessed via a Monte Carlo simulation. 
    more » « less
  5. A robust optimal guidance strategy is proposed. The guidance strategy is designed to reduce the possibility of violations in inequality path constraints in the presence of modeling errors and perturbations. The guidance strategy solves a constrained nonlinear optimal control problem at the start of every guidance cycle. In order to reduce the possibility of path constraint violations, the objective functional for the optimal control problem is modified at the start of a guidance cycle if it is found that the solution lies within a user-specified threshold of a path constraint limit. The modified objective functional is designed such that it maximizes the margin in the solution relative to the path constraint limit that could potentially be violated in the future. The method is validated on a path-constrained Mars entry problem where the reference model and the perturbed model differ in their atmospheric density. It is found for the example studied that the approach significantly improves the path constraint margin and maintains feasibility relative to a guidance approach that maintains the original objective functional for each guidance update. 
    more » « less